Copper welding is more difficult compared to metal welding.
As a result, most people prefer to weld copper pipes using the welding technique.
However, we will show you how to weld copper pipes with the GTAW and GMAW welders.
Copper is a natural metallic form, directly usable or native metal, that does not need to be extracted from its mineral.
Like an old metal, copper’s human use as tools, weapons, or ornaments even preceded the first forms of writing.
The malleability, ductility, and high conductivity of copper and heat make metal a trendy industrial and construction material today.
Copper is viable and can become many different end products, such as cables, electric wires, cylinders, and pipes.
Why is it more difficult to weld copper cylinders?
Welding copper pipes can be complicated, if not difficult, due to the metal’s excellent conductivity to heat.
This high thermal conductivity is why many artisans prefer welding copper pipes instead of welding them.
This is because copper pipes’ union using strong or welded welding is less complicated and more controllable than the welding of copper pipes.
Besides, the union of copper pipes with welding is cheaper than arc welding. However, the joint resulting from welding or brazing is not as strong as welded copper.
This is because, with welded copper, the copper pieces are joined by fusion.
Types of the arc welding process
Although about five arc welding processes are used today, two welding methods can provide the best welding copper.
These are gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW).
Tungsten gas arc welding (GTAW)
Like most arc welding processes, GTAW welding, more commonly famous as Tungsten Inert Gas (TIG), uses an electric arc to heat and melt the workpiece and the filler.
A protective gas such as helium or Argon is introduced into the torch’s tip to protect the molten solder bath from atmospheric effects as it cools and solidifies.
Unlike most arc welding methods such as armored metal [SMAW], gas metal [GMAW], and flux core [FCAW]) that use consumable electrodes to pass the electric arc to the workpiece.
TIG welding uses a non-consumable electrode in the welding process and can create a weld joint between workpieces with or without filler material.
The filling material in the GMAW, SMAW, or FCAW processes also acts as the electrode that carries the electric arc to the workpiece, while in TIG welding, a separate filling cable is used.
Besides, a filler material may or may not be introduced throughout the TIG welding process.
Gas arc welding with gas (GMAW)
Also known as metal welding with inert gas (MIG), GMAW works like armored metal (SMAW) that uses its electrode as a filler.
However, during welding, the SMAW system uses short rods as a consumable electrodes.
In contrast, in MIG welding, the user automatically feeds a continuous “wire” electrode to the welding torch at a defined speed.
In the same way, the shielding gas is fed to a regulated configuration.
Read NEXT – Best 2 0 Welding Cable Our Top Picks
Power supply
Although the TIG and MIG welding procedures are usually the same, there are some apparent differences between the 2, particularly in the equipment used.
TIG welding uses a constant current power supply to generate an electric arc. The heat remains consistent with this power supply, while the electric arc distance and voltage change.
The negatively charged direct current (DCEN) is the preferred polarity used in TIG. However, DCEP (positively charged) can also be used, but it is not so popular.
On the other hand, MIG welding generally works with a constant voltage power source in which the voltage (in volts) remains constant while the current, along with the electric arc and heat, oscillates.
MIG welding generally works with DCEP but can also be operated with DCEN or alternating current.
Other differences
As mentioned earlier, the electrode used in TIG welding is not consumable, while MIG welding uses an automatically fed consumable electrode wire that acts as a filler.
The TIG welding filler wire is manually inserted into the weld pool.
Material preparation
Before starting any welding job, searching and choosing the best available materials is essential.
For example, the copper pipe workpiece, such as filler rods or cables, must be clean and free of dirt, oil, grease, paint, or another impurity.
The surfaces where the welding joint will occur should be thoroughly cleaned with a steel brush or wet/dry sandpaper.
In addition, metal coatings such as nickel-plated or nickel-plated copper cylinders should be avoided to reduce the risk of generating toxic fumes during the welding process.
Types of copper available
Three grades of copper are available on the market today for copper materials. These are the following:
Copper without oxygen
This material has the highest electrical conductivity and is the most easily weldable. However, porosity can be problematic if proper filling material, such as non-deoxidized filler metal, is not used.
Oxygen-free copper does not contain more than 0.02 percent oxygen.
Deoxidized copper with phosphorus (P)
Deoxidized copper with P avoids any danger of porosity in the welded product.
It can contain approximately 0.05 percent phosphorus and arsenic.
Copper tone resistant
This material is the least desirable grade of copper, as it inherently contains the most significant amount of oxygen (less than 0.1 percent) in the form of copper oxide (CuO).
Types of filler wires
To obtain the best copper welding results, either with TIG or MiG welding, it is essential to use filler metals containing manganese (Mn) and silicon (Si) as deoxidants.
The most frequently preferred fillers are ErCu and ErCuSi-A. The ErCu filler contains 0.45 Mn and Si with 0.8 percent tin (Sn) to facilitate fluidity.
ErCuSi-A is the preferred input metal for welding oxidized copper with P, as hard pitch copper containing 1 percent of Mn and 3 percent of Si as deoxidants.
Read NEXT – Best Tig Welding Machine Aluminum Our Top Picks
Protective gas
Another essential element in copper welding is appropriate shielding gas while welding.
Typically, Argon (Ar), helium (He), or the combination of the two gases (such as the mixture of argon / 75 helium) is convenient for welding copper depending on the thickness of the workpiece; However, one hundred percent helium gas is currently gaining popularity.
How to weld a copper pipe step by step
Preheating
Due to copper’s high thermal conductivity, it is essential to preheat the metal (if it has a thickness of more than two mm or 0.01 inches) before any welding can be performed.
The pipe segments to be joined must be preheated evenly. Preheated copper dissipates heat slowly after welding and reduces the risk of cracking.
Depending on the thickness, copper is preheated from 10 ° C – 400 ° C.
The welding process
Before welding, the copper parts (copper pipes and fittings must be joined) are assembled.
When the desired preheating temperature is reached, welding begins by producing a molten puddle where the filling is introduced.
The filler wire should be introduced as soon as the puddle appears and proceed around the pipe where the joint is made.
It is essential to move quickly to weld at a less desirable speed that can cause oxidation and ruin welding work.
Proper use of heat and gas
Generally, when copper TIG welding is less than 0.01 inch or two mm thick, Argon should be used as a shielding gas with around 160 amps of current.
However, as the thickness of the copper pipe increases, the current must also be increased proportionally. For example, in copper welding with a thickness of 5 mm, TIG welding requires a preheating of 50 ° C, a protective argon/helium gas, and mixing of up to 300 amps of power.
MIG welding requires a preheating of 10-100 ° C and up to 240 amps of power with Argon as a shielding gas.
Whether you are using TIG or MiG welding, it is advisable to use pure helium as a shielding gas if welding is less desirable.
One hundred percent of helium shielding gas provides better heat levels, resulting in a faster welding process and better welding quality than Argon.
Security
Welding work is related to heat and electricity and possibly toxic gases that can be removed.
Therefore, safety is of the utmost importance, especially when welding non-ferrous metals such as copper.
Finally, TIG and MIG welders should wear appropriate safety equipment, such as safety clothing, leather gloves, headgear, eye protection, and a breathing mask.
Read NEXT – Best Welding Tools And Accessories For You in 2022
How to weld a copper tube with water
Do not try to weld pipes that have water. When you repair or tie existing copper pipes, it is common to find water in them even after closing the valve and draining the pipes.
Welding a joint in pipes that contain even small amounts of water is almost impossible.
Most of the torch’s heat converts water to steam, so copper won’t get hot enough to melt the weld.
In that case, stop the water dripping with a pipe plug. Push the pin into the pipe with the applicator tube provided.
Dissolve the cap by holding the torch below the plug’s point when finished welding: 1/2 inch plugs or 3/4 in. The pipe is sold in centers of origin and hardware stores.
An old trick was to temporarily put a wad of soft white bread in the pipe to stop the water jet.
This works but risks clogging aerators and valves with partially dissolved bread.
uxcell 1.5-inch ID 90 Degree Copper Elbow Short-Turn Copper Pipe Fitting Conector for Plumbing
Supply Giant DDGA0012 Female Adapter Fitting with C X F Connections, 1/2, Copper
DERNORD Ball Valve 3/4 Inch, Push-Fit Valve,Water Valve Shut Off, Push-to-Connect Fittings for PEX, Copper, CPVC Pipe
$12.99 in stock
uxcell Copper Tube, 2mm 3mm 4mm 5mm 6mm 7mm OD x 0.5mm Wall Thickness 300mm Length Seamless Round Pipe Tubing, Pack of 6
Mueller GIDDS-203316 Copper Tubing Boxed, 3/8 In. Od X 25 Ft. - 203316, Pack of 1
Xucus 16x1x48mm 180 Degree Return Bend Copper Weld Pipe Fitting Plumbing for Gas Water Oil
SharkBite U248LFA 90 Degree Elbow Plumbing Pipe Connector 1/2 In, PEX Fittings, Push-to-Connect, Copper, CPVC, 0.5 Inch
Ridgid 31622 Model 150 Constant Swing Tubing Cutter, 1/8-inch to 1-1/8-inch Tube Cutter
$32.79 in stock
ICS Industries - 2" TYPE M HARD COPPER 5 FT LENGTH (2-1/8" OD) ASTM B88 C12200
Type L, Hard Length, 1/2In. X 2ft.
Streamline Mh04005 1/2 X 5' Copper Pipe Type M
Mueller LH06002RT Copper Pre Cut Tubing Type L 3/4" X 24
$22.51 in stock
Mueller MH04002RT 1/2"Idx2' Copper M Pipe, ID x 2 Ft
$14.97 in stock
Type L, Hard Length, 1/4 in. x 5 ft.
Industrial Iron Pipe Shelving Brackets, Pipe Shelf Brackets, Pipe Shelves - Elbow (4, Red Bronze)
uxcell Copper Round Tube, 2mm OD 0.2mm Wall Thickness 300mm Long Straight Pipe Tubing 3 Pcs
Sioux Chief Mfg 600-212PK 12-Inch by 5/8-Inch CTS Sweat Connection Full Slip Repair Coupling
1 used from $4.90
LORESO Tube Bender, 3 In 1 for 1/4" 5/16" 3/8" 0-180 Degrees Tubing Bending Tools- Manual Tubing Bender for Copper, Brass, Aluminum and Thin Steel Pipes
5 used from $12.99
Mueller Streamline Co CU06020 3/8 Inch x 20 Ft Util Cop Tube
$34.50 in stock
Supply Giant DDMO0034-5 90 degrees Short Turn Sweat Elbow Copper Fittings, 3/4 (pack of 5)
$12.27 in stock
ICS Industries - 1/2" OD Copper Refrigeration ACR Tubing 50 FT
Supply Giant DDDQ0012-5 Straight Copper Coupling Fittings With Sweat Ends And Dimple Tube, 1/2 Inch
$6.97 in stock
Milwaukee 2471-21 12-Volt Copper Tubing Cutter Kit
$179.99 in stock
2 used from $179.00
Orion Motor Tech Professional Single Flaring Tool and Swaging Tool Kit for Copper Pipe/Tubing, 10-Piece
Supply Giant DDDM0150 Straight Copper Coupling With Sweat Sockets And Without Tube Stop, 1-1/2 Inch
$9.49 in stock